Articles

Fatshark 18650 headset battery case – autonomie +++ !

Salut les poulet(tes) !
Petite présentation rapide d’un accessoire super pratique pour de longues… très longues… sessions FPV.
Le boîtier fatshark pour mettre des batteries 18650 haute capacité.

Unboxing

Il serra rapidement fait…

La boite dans laquelle on reçoit la batterie.

Dedans on y retrouve uniquement la batterie, il n’y a pas de manuel explicatif.

Prise en main.. littéralement !

Tour d’horizon

Vue du boitier avec sa connexion vers l’alimentation des lunettes/masque.
Je l’ai testé avec succès sur Fatshark / Skyzone / Eachine goggle one + two.
Il est pourvu d’une prise type équilibrage JST-XH 2S qui permet d’alimenter un éventuel ventilateur (ex: celui des fatshark).
La taille du câble entre le le boitier et la prise d’équilibrage est de +-38mm tandis que le câble reliant le boitier au connecteur d’alimentation principal fait 60mm

Une trappe accessible de l’autre côté permet de placer 2 batteries de type 18650 à l’intérieur.
Des ressorts permettent de mettre en pression afin de donner de bons contacts d’alimentation à l’équipement.

Notez que la fermeture de la trappe est un peu difficile avec les batteries dedans.
Appuyez fermement pour fermer la trappe et verrouillez vous même le petit loquet plastique car avec les batteries à l’intérieur il ne se verrouille pas tout seul.

Renseignée aux dimensions de 78mm x 19mm x 45mm, nous avons mesurés 84,5mm x 23mmx  47mm .. ce n’est pas tout à fait pareil !
  

Le poids sur les sites qui le proposent à la vente l’estimaient à 60g, nous avons mesurés 40g à vide et 131g avec deux 18650 MECO de 4000mAh.
Si le poids ne pose aucun soucis, il n’est pas négligeable tout de même.

Un barregraphe à leds, de couleur bleu high-tech, permettant de visualiser l’état de la batterie est disponible sur la tranche.
Une pression sur le petit bouton (situé sous mon pouce) activera l’affichage le temps de l’appui.

Un peu plus grand et plus gros que la batterie d’origine des fatshark, il n’est pas trop dérangeant sur le bandeau de tête mais bien plus pratique que le traditionnel câble, bien connu des utilisateurs de skyzone, qui relie les lunettes à la LiPo dans la poche !

Quelles batteries mettre dedans?

Pour ma part j’ai mis des batteries Li-ion MECO 18650 4000mAh.
Elles ont l’avantage d’être peu cher (moins de 7€ pour 2), sont rechargeable plus de 500x , ont une protection en cas de surcharge, peuvent descendre plus bas que les LiPo lors de la décharge (2,75V) et m’offrent de longues heures en fonctionnement… pas certains qu’elles fassent exactement 4000mAh (je dirais plutôt de l’ordre des 3000mAh) mais c’est plus que suffisant pour être rassasié !
Difficile de dire exactement le temps de fonctionnement car je branche à l’utilisation et débranche quand je n’ai plus besoin du matériel… et tout dépend aussi du matériel (par exemple un diversity ou un grand écran de masque consomme plus qu’un récepteur unique sur un petit écran).
 

En cas de batterie faible (ce qui n’est pas encore arrivé), il me reste des Li-ion Trustfire 2500mAh.
Très bonne marque, super qualité aussi.

Pour vous donner une idée en terme de taille, voici une 18650 à côté d’une batterie standard AA 1.2V

Comment recharger?

Il existe plusieurs façons de recharger.

La plus simple, j’ai utilisé le chargeur de mes Eachine Goggle TWO.
C’est un chargeur pour Li-ion (car les goggle two utilisent aussi un pack à base de 2 Li-ion de 2200mAh), il est disponible à petit prix (7,5€) et il permet de recharger le pack en une fois sans retirer les batteries du boîtier.
Notez que ce chargeur est en prise UK, il faut rajouter un petit adaptateur UK vers EU pour l’utiliser dans nos prises… si vous achetez souvent en chine, vous en avez surement pleins qui trainent… pas certain qu’il soit livré avec !
 

 

une autre solution de charge consiste à utiliser un chargeur pour Li-ion dans lequel on place les batteries pour la charge. Il en existe de tout type (avec affichage ou simple comme ici).
Cela requiert de sortir les batteries du boîtier à chaque recharge ce qui est beaucoup plus contraignant !
 

Comparatif des dimensions pour vous faire une idée

De gauche a droite, batterie d’origine des fatshark attitude v2, batterie du Eachine goggle one, batterie du Eachine goggle two, le boitier fatshark pour 18650.

Une alternative plus compacte et moins cher

Une solution beaucoup moins cher et tout efficace (mais un peu moins longue en autonomie) consiste à ne pas acheter le boitier + 2 batteries, mais d’utiliser la batterie 18650 du Eachine Goggle Two (6,8€).
A l’intérieur ce sont deux batteries 18650 en série, d’une capacité de 2200mAh.
Moins encombrant que le boitier fatshark, un peu plus léger mais ça tient moins bien sur le bandeau de tête de nos lunettes… il n’y a pas de prise d’équilibrage pour alimenter un ventilateur et il n’y a pas de petit moniteur pour afficher le niveau d’alimentation

Liens utiles

Le boîtier Fatshark pour 18650 chez banggood
Le boîtier Fatshark pour 18650 chez studiosport

Batteries Li-ion:
2X Batteries Li-ion MECO 18650 4000mAh

Chargeurs:
Chargeur pour batteries Eachine Goggle Two (le plus facile) – attention il faut un adaptateur UK/EU
Chargeur pour batteries 18650 (il faut retirer les batteries du boîtier) – attention il faut un adaptateur UK/EU

Alternative:
Batterie 18650 pour Eachine Goggle Two

Tester la capacité de ses lipos : enfin un bon système!

La question de pouvoir mesurer l’état réel des lipos, cellule par cellule, me tracasse depuis longtemps..

Mesurer la résistance interne est fort décevant, la mesure ne représente absolument pas l’usage en conditions réelles (faible consommation de courant de mesure pour une faible durée)

Il n’y a qu’une chose à faire pour savoir si une cellule est en bon état: il faut lui faire débiter un courant sérieux et mesurer soit sa tension, soit directement sa capacité en mAh.

C’est ce que fait ce montage : chaque cellule débite un courant dans une résistance de puissance et sa capacité est mesurée

Tout le matériel nécessaire vient de chez Banggood.

Les modules utilisés ici sont limités à 3 Ampères maximum, il en existe jusqu’à 10 A (plus chers).
Chaque module doit impérativement être alimenté par une alimentation de 5 Volts isolée galvaniquement des autres.
On est donc obligé d’utiliser une alimentation par module.
Heureusement nos copains chinois sont là!
Comme (dé)charge, j’ai monté des résistances de 1,5 Ohms 5 Watts, ainsi le courant de décharge est de plus de 2,5 A au départ et diminue ensuite à la fin vers 2,2 A en réglant le seuil d’arrêt du cycle à 3,3 Volts.

Résultat des courses : très concluant… on voit tout de suite que la capacité est inférieure à la nominale et que les cellules ne sont pas équivalentes.

Un exemple : une 2200 3S me donne 1700 / 1940 / 1905 mAh !
Et ce test n’a été réalisé qu’à 2,5 Ampères de décharge, en pleine (dé)charge à 20 ou 25 A, sur une machine en vol par exemple, ce sera encore pire évidemment.
Dans ce cas ci, j’en déduis que je pourrais remplacer la cellule la plus faible mais que cela n’en vaut pas nécessairement la peine vu l’état des deux autres.
Par contre, pour tester une lipo de 300mAh, le test serait presque nominal.

L’idéal pour ce montage et les tests serait d’utiliser les modules de 10A mais à 18 euros/pièce..bof bof…
Ou alors mesurer chaque cellule séparément… mais pfffff, trop long…

Pour l’ensemble de ce montage en version 3S, le prix de revient est de 17 euros en tout, mais rien n’empêche de faire une version 4S.

Bref, un bricolage sympa, utile et pas cher…comme j’aime quoi…

Matériel nécessaire pour la version 3S:

3x module ZB2L3 Battery capacity tester
3x alimentation 5V 500mA (modèle EU)

Nb: rajouter une unité de chaque pour la version 4S

Crédits: Thierry Kouna Nabakou

Rangez votre sac à vomi !

Bonne nouvelle pour les possesseurs de micro caméras cmos avec objectif 1.8mm, il existe une petite mod super efficace et bon marché qui permettra à votre micro caméra de rivaliser avec les grandes !
Fini l’effet fish-eye démesuré qui vous donne la gerbe.
Fini l’impression de voler à la vitesse de la lumière alors que vous faites du sur-place !

Grâce à cette astuce, vous aurez l’impression de voler avec un objectif 2.8mm.
Ca améliorera certainement votre manière de piloter et en plus vous redonnera l’envie de sortir votre mini.

Etape 1: commandez cet article -> LENS D module pour 808 #16
(malheureusement je n’ai pas trouvé la lentille seule)

Etape 2: patientez une petite dizaine de jours (ca vient de l’autre côté de la terre quand même)

Etape 3: prenez le petit module avec la lentille qui vous a été livré.

mod_microcam

Etape 4: au moyen d’une très fine lame, faites sauter l’espèce de colle qui scelle la lentille au module keychain.
j’ai noté l’emplacement de cette colle en rouge sur l’image.

mod_microcam

Etape 5: une fois la colle éliminée, dévisser simplement la lentille en faisant attention de ne pas mettre vos gros doigts tout gras sur les ouvertures.

Etape 6: dévissez la lentille de votre micro caméra et vissez y la nouvelle lentille keychain (mettez un peu de frein filet bleu sur le pas de vis, ce n’est que bénéfique)

mod_microcam

Etape 7: faites une mise au point en vissant/dévissant légèrement la lentille

Etape 8: placez un léger point de colle chaude entre le corps de la micro caméra et la lentille fraîchement vissée pour être certain qu’elle ne se dévisse pas en vol.

Etape 9: testez en vol… vous redécouvrez votre racer non? de nouvelles sensations?

Etape 10: commentez cette astuce ! 🙂

Merci à Michael de O3-FPV pour le partage de cette astuce super utile.